

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 1 of 21 www.netacad.com

Lab - Automated Testing Using pyATS and Genie (Instructor
Version)
Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

Answers: 7.6.3 Lab - Automated Testing Using pyATS and Genie

Objectives

Part 1: Launch the DEVASC VM

Part 2: Create a Python Virtual Environment

Part 3: Use the pyATS Testing Library

Part 4: Use Genie to Parse IOS Command Output

Part 5: Use Genie to Compare Configurations

Part 6: Lab Cleanup and Further Investigation

Background / Scenario

In this lab, you will explore the fundamentals pyATS (pronounced "py" followed by each letter individually, "A",
"T". "S") and Genie. The pyATS tool is an end-to-end testing ecosystem, specializing in data-driven and
reusable testing, and engineered to be suitable for Agile, rapid development iterations. Extensible by design,
pyATS enables developers start with small, simple, and linear test cases, and scale towards large, complex,
and asynchronous test suites.

Genie extends and builds on pyATS to be used in a networking environment. Examples of features Genie
provides include:

 device connectivity, parsers, and APIs

 platform-agnostic Python object models for features such as OSPF and BGP

 pool of reusable test cases

 YAML-driven test-runner engine

Required Resources

 1 PC with operating system of your choice

 Virtual Box or VMWare

 DEVASC Virtual Machine

 CSR1kv Virtual Machine

Instructions

Part 1: Launch the DEVASC VM

If you have not already completed the Lab - Install the Virtual Machine Lab Environment, do so now. If you
have already completed that lab, launch the DEVASC VM now.

https://itexamanswers.net/7-6-3-lab-automated-testing-using-pyats-and-genie-answers.html

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 2 of 21 www.netacad.com

Part 2: Create a Python Virtual Environment

In this part, you will create a Python virtual environment called a Python virtual environment or "venv".

Step 1: Open a terminal in the DEVASC-LABVM.

Double-click the Terminal Emulator icon on the desktop.

Step 2: Creating Python virtual environment (venv).

The pyATS tool is best installed for individual work within a venv. A venv environment is copied from your
Python base environment but kept separate from it. This enables you to avoid installing software that might
permanently change the overall state of your computer. The venv environment was covered in detail in the
Lab - Explore Python Development Tools earlier in the course.

a. Create a pyats directory and change to that directory. You can use the characters && to combine the two
commands on one line.

devasc@labvm:~$ mkdir labs/devnet-src/pyats && cd labs/devnet-src/pyats

devasc@labvm:~/labs/devnet-src/pyats$

b. Create a new Python virtual environment that creates the directory csr1kv in the pyats directory.

devasc@labvm:~/labs/devnet-src/pyats$ python3 -m venv csr1kv

Note: You can also use a period "." instead of a name of a directory if you want to create a venv
environment in the current directory.

Step 3: Review your Python virtual environment (venv).

a. Change directories to your new "target" directory csr1kv and list the files. Venv creates a self-contained
directory tree (test-project) that contains a Python installation for a particular version of Python, plus a
number of additional packages. It also creates a bin subdirectory containing a copy of the Python binary.

Notice in particular the bin subdirectory and the pyvenv.cfg files that were created.

devasc@labvm:~/labs/devnet-src/pyats$ cd csr1kv

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l

total 20

drwxrwxr-x 2 devasc devasc 4096 May 31 16:07 bin

drwxrwxr-x 2 devasc devasc 4096 May 31 16:07 include

drwxrwxr-x 3 devasc devasc 4096 May 31 16:07 lib

lrwxrwxrwx 1 devasc devasc 3 May 31 16:07 lib64 -> lib

-rw-rw-r-- 1 devasc devasc 69 May 31 16:07 pyvenv.cfg

drwxrwxr-x 3 devasc devasc 4096 May 31 16:07 share

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

b. Examine the contents of the pyvenv.cfg file. Notice that this file points to the location of your Python
installation in /usr/bin.

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat pyvenv.cfg

home = /usr/bin

include-system-site-packages = false

version = 3.8.2

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

c. A symbolic link (also known as a symlink) is a special type of file that serves as a reference to another file
or directory. To get a better understanding of the venv and how it uses symbolic links, list Python files in
the /usr/bin directory referenced in the pyvenv.cfg file. Use the ls number one option (-1) to list the files
each on one line.

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 3 of 21 www.netacad.com

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -1 /usr/bin/python*

/usr/bin/python3

/usr/bin/python3.8

/usr/bin/python3.8-config

/usr/bin/python3-config

/usr/bin/python-argcomplete-check-easy-install-script3

/usr/bin/python-argcomplete-tcsh3

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

d. Now examine the contents of the venv-created bin subdirectory. Notice there are two files in this
subdirectory, both of which are symlinks. In this case, it is a link to the Python binaries in /usr/bin.
Symlinks are used to link libraries and make sure files there have consistent access to these files without
having to move or create a copy of the original file. There is also a file, activate, that will be discussed
next.

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l bin

total 44

-rw-r--r-- 1 devasc devasc 2225 May 31 16:07 activate

-rw-r--r-- 1 devasc devasc 1277 May 31 16:07 activate.csh

-rw-r--r-- 1 devasc devasc 2429 May 31 16:07 activate.fish

-rw-r--r-- 1 devasc devasc 8471 May 31 16:07 Activate.ps1

-rwxrwxr-x 1 devasc devasc 267 May 31 16:07 easy_install

-rwxrwxr-x 1 devasc devasc 267 May 31 16:07 easy_install-3.8

-rwxrwxr-x 1 devasc devasc 258 May 31 16:07 pip

-rwxrwxr-x 1 devasc devasc 258 May 31 16:07 pip3

-rwxrwxr-x 1 devasc devasc 258 May 31 16:07 pip3.8

lrwxrwxrwx 1 devasc devasc 7 May 31 16:07 python -> python3

lrwxrwxrwx 1 devasc devasc 16 May 31 16:07 python3 -> /usr/bin/python3

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

e. Launch the virtual environment using bin/activate. Notice your prompt is now preceded with (csr1kv). All
the commands done from this point on are within this venv.

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ source bin/activate

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Note: The deactivate command is used to exit the venv environment and return to the normal shell
environment.

Part 3: Use the pyATS Testing Library

In this part, you will use pyATS, a python testing library.

Step 1: Installing pyATS.

Install pyATS using pip3. This will take a few minutes. During installation you may see some errors. These
can usually be ignored as long as pyATS can be verified as shown in the next step.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ pip3 install

pyats[full]

Collecting pyats[full]

 Downloading pyats-20.4-cp38-cp38-manylinux1_x86_64.whl (2.0 MB)

<output omitted>

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 4 of 21 www.netacad.com

Step 2: Verifying pyATS.

Verify that pyATS was successfully installed using the pyats --help command. Notice you can get additional
help on any pyats command with the pyats <command> --help command.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ pyats --help

Usage:

 pyats <command> [options]

Commands:

 create create scripts and libraries from template

 diff Command to diff two snapshots saved to file or directory

 dnac Command to learn DNAC features and save to file (Prototype)

 learn Command to learn device features and save to file

 logs command enabling log archive viewing in local browser

 parse Command to parse show commands

 run runs the provided script and output corresponding results.

 secret utilities for working with secret strings.

 shell enter Python shell, loading a pyATS testbed file and/or

pickled data

 validate utlities that helps to validate input files

 version commands related to version display and manipulation

General Options:

 -h, --help Show help

Run 'pyats <command> --help' for more information on a command.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 3: Clone and examine the pyATS sample scripts from GitHub.

a. Clone the Github pyATS sample scripts repository CiscoTestAutomation.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ git clone

https://github.com/CiscoTestAutomation/examples

Cloning into 'examples'...

remote: Enumerating objects: 35, done.

remote: Counting objects: 100% (35/35), done.

remote: Compressing objects: 100% (31/31), done.

remote: Total 658 (delta 11), reused 18 (delta 4), pack-reused 623

Receiving objects: 100% (658/658), 1.00 MiB | 4.82 MiB/s, done.

Resolving deltas: 100% (338/338), done.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

b. Verify the copy was successful by listing the files in the current directory. Notice there is a new
subdirectory example.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l

total 24

drwxrwxr-x 2 devasc devasc 4096 May 31 16:07 bin

drwxrwxr-x 21 devasc devasc 4096 May 31 16:47 examples

drwxrwxr-x 2 devasc devasc 4096 May 31 16:07 include

drwxrwxr-x 3 devasc devasc 4096 May 31 16:07 lib

lrwxrwxrwx 1 devasc devasc 3 May 31 16:07 lib64 -> lib

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 5 of 21 www.netacad.com

-rw-rw-r-- 1 devasc devasc 69 May 31 16:07 pyvenv.cfg

drwxrwxr-x 3 devasc devasc 4096 May 31 16:07 share

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

c. List the files in the examples subdirectory. Notice there is a subdirectory, basic, along with a several
other files.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l examples

total 88

drwxrwxr-x 3 devasc devasc 4096 May 31 16:47 abstraction_example

drwxrwxr-x 2 devasc devasc 4096 May 31 16:47 basic

<output omitted>

drwxrwxr-x 2 devasc devasc 4096 May 31 16:47 uids

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

d. List the files in this basic subdirectory. This is the location of the scripts you will be using in the next step.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l examples/basic

total 12

-rw-rw-r-- 1 devasc devasc 510 May 31 16:47 basic_example_job.py

-rwxrwxr-x 1 devasc devasc 4475 May 31 16:47 basic_example_script.py

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 4: Examine the basic script files.

The test declaration syntax for pyATS is based on popular Python unit-testing frameworks like pytest. It
supports basic testing statements, such as an assertion that a variable has a given value, and along with
explicitly providing results via specific APIs.

a. The Python script you will use is basic_example_script.py. Display the content of the Python script
using the cat command. Pipe it to more if you want to view it one screen or line at a time. Notice that this
script contains the following sections as highlighted in the output below:

 A common setup block

 Multiple testing blocks

 A common Cleanup block

These blocks contain statements that prepare and/or determine readiness of the test topology (a process
that can include problem injection), perform tests, and then return the topology to a known state.

The Testing blocks - often referred to in pyATS documentation as the Test Cases - can each contain
multiple tests, with their own Setup and Cleanup code. Best practice suggests, though, that the common
Cleanup section, at the end, be designed for idempotency, meaning it should check and restore all
changes made by Setup and Test, and restore the topology to its original, desired state.

Note: Although it is not necessary to understand the code, you will find it helpful to read the comments
within the Python script.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat

examples/basic/basic_example_script.py | more

#!/usr/bin/env python

basic_example.py : A very simple test script example which include:

common_setup

Tescases

common_cleanup

The purpose of this sample test script is to show the "hello world"

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 6 of 21 www.netacad.com

of aetest.

To get a logger for the script

import logging

Needed for aetest script

from pyats import aetest

Get your logger for your script

log = logging.getLogger(__name__)

COMMON SETUP SECTION ###

This is how to create a CommonSetup

You can have one of no CommonSetup

CommonSetup can be named whatever you want

class common_setup(aetest.CommonSetup):

 """ Common Setup section """

 # CommonSetup have subsection.

 # You can have 1 to as many subsection as wanted

 # here is an example of 2 subsections

 # First subsection

 @aetest.subsection

 def sample_subsection_1(self):

 """ Common Setup subsection """

 log.info("Aetest Common Setup ")

 # If you want to get the name of current section,

 # add section to the argument of the function.

 # Second subsection

 @aetest.subsection

 def sample_subsection_2(self, section):

 """ Common Setup subsection """

 log.info("Inside %s" % (section))

 # And how to access the class itself ?

 # self refers to the instance of that class, and remains consistent

 # throughout the execution of that container.

 log.info("Inside class %s" % (self.uid))

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 7 of 21 www.netacad.com

TESTCASES SECTION ###

This is how to create a testcase

You can have 0 to as many testcase as wanted

Testcase name : tc_one

class tc_one(aetest.Testcase):

 """ This is user Testcases section """

 # Testcases are divided into 3 sections

 # Setup, Test and Cleanup.

 # This is how to create a setup section

 @aetest.setup

 def prepare_testcase(self, section):

 """ Testcase Setup section """

 log.info("Preparing the test")

 log.info(section)

 # This is how to create a test section

 # You can have 0 to as many test section as wanted

 # First test section

 @ aetest.test

 def simple_test_1(self):

 """ Sample test section. Only print """

 log.info("First test section ")

 # Second test section

 @ aetest.test

 def simple_test_2(self):

 """ Sample test section. Only print """

 log.info("Second test section ")

 # This is how to create a cleanup section

 @aetest.cleanup

 def clean_testcase(self):

 """ Testcase cleanup section """

 log.info("Pass testcase cleanup")

Testcase name : tc_two

class tc_two(aetest.Testcase):

 """ This is user Testcases section """

 @ aetest.test

 def simple_test_1(self):

 """ Sample test section. Only print """

 log.info("First test section ")

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 8 of 21 www.netacad.com

 self.failed('This is an intentional failure')

 # Second test section

 @ aetest.test

 def simple_test_2(self):

 """ Sample test section. Only print """

 log.info("Second test section ")

 # This is how to create a cleanup section

 @aetest.cleanup

 def clean_testcase(self):

 """ Testcase cleanup section """

 log.info("Pass testcase cleanup")

COMMON CLEANUP SECTION ###

This is how to create a CommonCleanup

You can have 0 , or 1 CommonCleanup.

CommonCleanup can be named whatever you want :)

class common_cleanup(aetest.CommonCleanup):

 """ Common Cleanup for Sample Test """

 # CommonCleanup follow exactly the same rule as CommonSetup regarding

 # subsection

 # You can have 1 to as many subsection as wanted

 # here is an example of 1 subsections

 @aetest.subsection

 def clean_everything(self):

 """ Common Cleanup Subsection """

 log.info("Aetest Common Cleanup ")

if __name__ == '__main__': # pragma: no cover

 aetest.main()

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

A pyATS script is a Python file where pyATS tests are declared. It can be run directly as a standalone
Python script file, generating output only to your terminal window. Alternatively, one or more pyATS
scripts can be compiled into a "job" and run together as a batch, through the pyATS EasyPy module.
EasyPy enables parallel execution of multiple scripts, collects logs in one place, and provides a central
point from which to inject changes to the topology under test.

b. Use cat to display your pyATS job file, pyats_sample_job.py. Notice the instructions on how to run this
file, highlighted below.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat

examples/basic/basic_example_job.py

To run the job:

pyats run job basic_example_job.py

Description: This example shows the basic functionality of pyats

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 9 of 21 www.netacad.com

with few passing tests

import os

from pyats.easypy import run

All run() must be inside a main function

def main():

 # Find the location of the script in relation to the job file

 test_path = os.path.dirname(os.path.abspath(__file__))

 testscript = os.path.join(test_path, 'basic_example_script.py')

 # Execute the testscript

 run(testscript=testscript)

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 5: Run pyATS manually to invoke the basic test case.

a. Using the pyATS job and script files, run pyATS manually to invoke the basic test case. This will verify the
pyATS job and script files work properly. The information in the output is beyond the scope of this lab,
however you will notice that the job and script passed all required tasks.

Note: The output below was truncated. The Cisco Test Automation repository on GitHub is subject to
change, which includes the pyATS job and scripts files. Your output is subject to change but should not
affect your outcome. For example, an intentional failure was added to the basic_example_script.py file.
This is an intentional failure and does not cause any problems. It is an example that repositories are
dynamic. It is one of the highlighted lines below.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ pyats run job

examples/basic/basic_example_job.py

2020-05-31T17:10:17: %EASYPY-INFO: Starting job run: basic_example_job

2020-05-31T17:10:17: %EASYPY-INFO: Runinfo directory:

/home/devasc/.pyats/runinfo/basic_example_job.2020May31_17:10:16.735106

2020-05-31T17:10:17: %EASYPY-INFO: ---

2020-05-31T17:10:18: %EASYPY-INFO: Starting task execution: Task-1

2020-05-31T17:10:18: %EASYPY-INFO: test harness = pyats.aetest

2020-05-31T17:10:18: %EASYPY-INFO: testscript = /home/devasc/labs/devnet-

src/pyats/csr1kv/examples/basic/basic_example_script.py

2020-05-31T17:10:18: %AETEST-INFO: +--

----------------------------+

2020-05-31T17:10:18: %AETEST-INFO: | Starting common setup

|

<output omitted>

-------+

2020-05-31T17:10:18: %SCRIPT-INFO: First test section

2020-05-31T17:10:18: %AETEST-ERROR: Failed reason: This is an intentional failure

2020-05-31T17:10:18: %AETEST-INFO: The result of section simple_test_1 is => FAILED

2020-05-31T17:10:18: %AETEST-INFO: +--

----------------------------+

2020-05-31T17:10:18: %AETEST-INFO: | Starting section

simple_test_2 |

<output omitted>

-------+

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 10 of 21 www.netacad.com

2020-05-31T17:10:20: %EASYPY-INFO: | Easypy Report

|

2020-05-31T17:10:20: %EASYPY-INFO: +--

----------------------------+

<output omitted>

2020-05-31T17:10:20: %EASYPY-INFO: Overall Stats

2020-05-31T17:10:20: %EASYPY-INFO: Passed : 3

2020-05-31T17:10:20: %EASYPY-INFO: Passx : 0

2020-05-31T17:10:20: %EASYPY-INFO: Failed : 1

2020-05-31T17:10:20: %EASYPY-INFO: Aborted : 0

2020-05-31T17:10:20: %EASYPY-INFO: Blocked : 0

2020-05-31T17:10:20: %EASYPY-INFO: Skipped : 0

2020-05-31T17:10:20: %EASYPY-INFO: Errored : 0

2020-05-31T17:10:20: %EASYPY-INFO:

2020-05-31T17:10:20: %EASYPY-INFO: TOTAL : 4

2020-05-31T17:10:20: %EASYPY-INFO:

2020-05-31T17:10:20: %EASYPY-INFO: Success Rate : 75.00 %

2020-05-31T17:10:20: %EASYPY-INFO:

2020-05-31T17:10:20: %EASYPY-INFO: +--

----------------------------+

2020-05-31T17:10:20: %EASYPY-INFO: | Task Result Summary

|

2020-05-31T17:10:20: %EASYPY-INFO: +--

----------------------------+

2020-05-31T17:10:20: %EASYPY-INFO: Task-1: basic_example_script.common_setup

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: Task-1: basic_example_script.tc_one

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: Task-1: basic_example_script.tc_two

FAILED

2020-05-31T17:10:20: %EASYPY-INFO: Task-1: basic_example_script.common_cleanup

PASSED

2020-05-31T17:10:20: %EASYPY-INFO:

2020-05-31T17:10:20: %EASYPY-INFO: +--

----------------------------+

2020-05-31T17:10:20: %EASYPY-INFO: | Task Result Details

|

2020-05-31T17:10:20: %EASYPY-INFO: +--

----------------------------+

2020-05-31T17:10:20: %EASYPY-INFO: Task-1: basic_example_script

2020-05-31T17:10:20: %EASYPY-INFO: |-- common_setup

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: | |-- sample_subsection_1

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: | `-- sample_subsection_2

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: |-- tc_one

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: | |-- prepare_testcase

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: | |-- simple_test_1

PASSED

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 11 of 21 www.netacad.com

2020-05-31T17:10:20: %EASYPY-INFO: | |-- simple_test_2

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: | `-- clean_testcase

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: |-- tc_two

FAILED

2020-05-31T17:10:20: %EASYPY-INFO: | |-- simple_test_1

FAILED

2020-05-31T17:10:20: %EASYPY-INFO: | |-- simple_test_2

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: | `-- clean_testcase

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: `-- common_cleanup

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: `-- clean_everything

PASSED

2020-05-31T17:10:20: %EASYPY-INFO: Sending report email...

2020-05-31T17:10:20: %EASYPY-INFO: Missing SMTP server configuration, or failed to

reach/authenticate/send mail. Result notification email failed to send.

2020-05-31T17:10:20: %EASYPY-INFO: Done!

Pro Tip

 Use the following command to view your logs locally:

 pyats logs view

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Part 4: Use Genie to Parse IOS Command Output

In this Part, you will use Genie to take unstructured IOS output and parse it into JSON output.

Note: Not all IOS commands are supported. Complete Genie documentation can be found at:
https://developer.cisco.com/docs/genie-docs/

Step 1: Create a testbed YAML file.

The pyATS and Genie tools use a YAML file to know which devices to connect to and what the proper
credentials are. This file is known as a testbed file. Genie includes built-in functionality to build the testbed file
for you.

a. Enter the command genie --help to see all the available commands. For additional help on any
command, use the <command> parameter, as shown below, for the create command. Notice that
testbed is one of the options for the create command.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie --help

Usage:

 genie <command> [options]

Commands:

 create Create Testbed, parser, triggers, ...

 diff Command to diff two snapshots saved to file or directory

 dnac Command to learn DNAC features and save to file (Prototype)

 learn Command to learn device features and save to file

 parse Command to parse show commands

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 12 of 21 www.netacad.com

 run Run Genie triggers & verifications in pyATS runtime

environment

 shell enter Python shell, loading a pyATS testbed file and/or

pickled data

General Options:

 -h, --help Show help

Run 'genie <command> --help' for more information on a command.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie create --help

Usage:

 genie create <subcommand> [options]

Subcommands:

 parser create a new Genie parser from template

 testbed create a testbed file automatically

 trigger create a new Genie trigger from template

General Options:

 -h, --help Show help

 -v, --verbose Give more output, additive up to 3 times.

 -q, --quiet Give less output, additive up to 3 times, corresponding to

WARNING, ERROR,

 and CRITICAL logging levels

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

b. To create your testbed YAML file, enter the command below. The --output parameter will create a
testbed.yml file in a directory named yaml. The directory will be automatically created. The --encode-
password parameter will encode the passwords in the YAML file. The parameter interactive means you
will be asked a series of questions. Answer no to the first three questions. And then provide the following
answers to create the testbed.yaml file.

 Device hostname - This must match the hostname of the device, which for this lab is CSR1kv.

 IP address - This must match your CSR1kv IPv4 address you discovered earlier in this lab. Shown
here is 192.168.56.101.

 Username - This is the local username used for ssh, which is cisco.

 Default password - This is the local password used for ssh, which is cisco123!.

 Enable password - Leave blank. There is no privileged password configured on the router.

 Protocol - SSH along with the key exchange group expected by the router.

 OS - The OS on the router.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie create testbed

interactive --output yaml/testbed.yml --encode-password

Start creating Testbed yaml file ...

Do all of the devices have the same username? [y/n] n

Do all of the devices have the same default password? [y/n] n

Do all of the devices have the same enable password? [y/n] n

Device hostname: CSR1kv

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 13 of 21 www.netacad.com

 IP (ip, or ip:port): 192.168.56.101

 Username: cisco

Default Password (leave blank if you want to enter on demand): cisco123!

Enable Password (leave blank if you want to enter on demand):

 Protocol (ssh, telnet, ...): ssh -o KexAlgorithms=diffie-hellman-group14-

sha1

 OS (iosxr, iosxe, ios, nxos, linux, ...): iosxe

More devices to add ? [y/n] n

Testbed file generated:

yaml/testbed.yml

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

c. Use cat to view the testbed.yml file in the yaml directory. Notice your entries in the YAML file. Your SSH
password is encrypted and the enable password will "ASK" the user to enter the password if one is
required.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat yaml/testbed.yml

devices:

 CSR1kv:

 connections:

 cli:

 ip: 192.168.56.101

 protocol: ssh -o KexAlgorithms=diffie-hellman-group14-sha1

 credentials:

 default:

 password: '%ENC{w5PDosOUw5fDosKQwpbCmMKH}'

 username: cisco

 enable:

 password: '%ASK{}'

 os: iosxe

 type: iosxe

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 2: Use Genie to parse output from the show ip interface brief command into JSON.

a. If you have not already completed the Lab - Install the CSR1kv VM, do so now. If you have already
completed that lab, launch the CSR1kv VM now.

b. In the CSR1kv VM, enter the command show ip interface brief from privileged exec mode. Your address
may be incremented to some other address other than 192.168.56.101. Make note of the IPv4 address
for your CSR1kv VM. You will use it later in the lab.

CSR1kv> en

CSR1kv# show ip interface brief

Interface IP-Address OK? Method Status Protocol

GigabitEthernet1 192.168.56.101 YES DHCP up up

CSR1kv#

c. Using your testbed YAML file, invoke Genie to parse unstructured output from the show ip interface
brief command into structured JSON. This command includes the IOS command to be parsed (show ip
interface brief), the YAML testbed file (testbed.yml), and the specified device in the testbed file
(CSR1kv).

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 14 of 21 www.netacad.com

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie parse "show ip

interface brief" --testbed-file yaml/testbed.yml --devices CSR1kv

Enter enable password for device CSR1kv: <Enter>

2020-05-31T18:59:23: %UNICON-WARNING: Device 'CSR1kv' connection 'cli' does not have

IP and/or port specified, ignoring

Device 'CSR1kv' connection 'cli' does not have IP and/or port specified, ignoring

 0%|

| 0/1 [00:00<?, ?it/s]{

 "interface": {

 "GigabitEthernet1": {

 "interface_is_ok": "YES",

 "ip_address": "192.168.56.101",

 "method": "DHCP",

 "protocol": "up",

 "status": "up"

 }

 }

}

100%|███|

1/1 [00:00<00:00, 2.22it/s]

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ^C

Step 3: Use Genie to parse output from the show version command into JSON.

For another example, parse unstructured output from the show version command into structured JSON.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie parse "show

version" --testbed-file yaml/testbed.yml --devices CSR1kv

Enter enable password for device CSR1kv: <Enter>

2020-05-31T18:41:32: %UNICON-WARNING: Device 'CSR1kv' connection 'cli' does not have

IP and/or port specified, ignoring

Device 'CSR1kv' connection 'cli' does not have IP and/or port specified, ignoring

 0%|

| 0/1 [00:00<?, ?it/s]{

 "version": {

 "chassis": "CSR1000V",

 "chassis_sn": "9K8P1OFYE3D",

 "compiled_by": "mcpre",

 "compiled_date": "Thu 30-Jan-20 18:48",

 "curr_config_register": "0x2102",

 "disks": {

 "bootflash:.": {

 "disk_size": "7774207",

 "type_of_disk": "virtual hard disk"

 },

 "webui:.": {

 "disk_size": "0",

 "type_of_disk": "WebUI ODM Files"

 }

 },

 "hostname": "CSR1kv",

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 15 of 21 www.netacad.com

 "image_id": "X86_64_LINUX_IOSD-UNIVERSALK9-M",

 "image_type": "production image",

 "last_reload_reason": "reload",

 "license_level": "ax",

 "license_type": "Default. No valid license found.",

 "main_mem": "2182252",

 "mem_size": {

 "non-volatile configuration": "32768",

 "physical": "3985032"

 },

 "next_reload_license_level": "ax",

 "number_of_intfs": {

 "Gigabit Ethernet": "1"

 },

 "os": "IOS-XE",

 "platform": "Virtual XE",

 "processor_type": "VXE",

 "returned_to_rom_by": "reload",

 "rom": "IOS-XE ROMMON",

 "rtr_type": "CSR1000V",

 "system_image": "bootflash:packages.conf",

 "uptime": "2 days, 6 hours, 26 minutes",

 "uptime_this_cp": "2 days, 6 hours, 27 minutes",

 "version": "16.9.5",

 "version_short": "16.9"

 }

}

100%|███|

1/1 [00:00<00:00, 2.06it/s]

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Part 5: Use Genie to Compare Configurations

As you have seen Genie can be used to parse show commands into structured json. Genie can also be used
to:

 Take snapshots of configs annually and make comparisons between them

 Automate testing deployments against a virtual environment for testing before deployment in
production

 To troubleshoot configurations by doing comparisons between devices

In parts 5 and 6, you will see how to do a comparison between two different outputs.

Step 1: Add an IPv6 address to CSR1kv.

a. On the CSR1kv VM add the following IPv6 address:

CSR1kv(config)# interface gig 1

CSR1kv(config-if)# ipv6 address 2001:db8:acad:56::101/64

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 16 of 21 www.netacad.com

Step 2: Use Genie to verify configuration and parse output in JSON.

a. Parse unstructured output from the show ipv6 interface command into structured JSON. Use the --
output parameter to send the output to a directory verify-ipv6-1. Notice in the output that Genie tells you
that two files were created.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie parse "show ipv6

interface gig 1" --testbed-file yaml/testbed.yml --devices CSR1kv --output

verify-ipv6-1

Enter enable password for device CSR1kv: <Enter>

2020-05-31T19:36:19: %UNICON-WARNING: Device 'CSR1kv' connection 'cli' does not have

IP and/or port specified, ignoring

Device 'CSR1kv' connection 'cli' does not have IP and/or port specified, ignoring

100%|███|

1/1 [00:00<00:00, 2.08it/s]

+==+

| Genie Parse Summary for CSR1kv |

+==+

| Connected to CSR1kv |

| - Log: verify-ipv6-1/connection_CSR1kv.txt |

|--|

| Parsed command 'show ipv6 interface gig 1' |

| - Parsed structure: verify-ipv6-1/CSR1kv_show-ipv6-interface- |

| gig-1_parsed.txt |

| - Device Console: verify-ipv6-1/CSR1kv_show-ipv6-interface- |

| gig-1_console.txt |

|--|

csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

b. List the files created by Genie in the directory verify-ipv6-1. Notice there were two files created with the
similar names but one ending in _console.txt and the other in _parsed.txt. The name of each file
includes the device name and the IOS command used in the Genie parse command.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l verify-ipv6-1

total 16

-rw-rw-rw- 1 devasc devasc 9094 May 31 19:36 connection_CSR1kv.txt

-rw-rw-r-- 1 devasc devasc 745 May 31 19:36 CSR1kv_show-ipv6-interface-gig-

1_console.txt

-rw-rw-r-- 1 devasc devasc 877 May 31 19:36 CSR1kv_show-ipv6-interface-gig-

1_parsed.txt

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

c. Use cat to examine the contents of the _console.txt file. Notice both the IPv6 global unicast address that
you configured and an automatic EUI-64 link-local address.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat verify-ipv6-

1/CSR1kv_show-ipv6-interface-gig-1_console.txt

+++ CSR1kv: executing command 'show ipv6 interface gig 1' +++

show ipv6 interface gig 1

GigabitEthernet1 is up, line protocol is up

 IPv6 is enabled, link-local address is FE80::A00:27FF:FE73:D79F

 No Virtual link-local address(es):

 Description: VBox

 Global unicast address(es):

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 17 of 21 www.netacad.com

 2001:DB8:ACAD:56::101, subnet is 2001:DB8:ACAD:56::/64

 Joined group address(es):

 FF02::1

 FF02::1:FF00:101

 FF02::1:FF73:D79F

 MTU is 1500 bytes

 ICMP error messages limited to one every 100 milliseconds

 ICMP redirects are enabled

 ICMP unreachables are sent

 ND DAD is enabled, number of DAD attempts: 1

 ND reachable time is 30000 milliseconds (using 30000)

 ND NS retransmit interval is 1000 milliseconds

CSR1kv#

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

d. Use cat to examine the contents of the _parsed.txt file. This is the parsed JSON file of the show ipv6
interface gig 1 command.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat verify-ipv6-

1/CSR1kv_show-ipv6-interface-gig-1_parsed.txt

{

 "GigabitEthernet1": {

 "enabled": true,

 "ipv6": {

 "2001:DB8:ACAD:56::101/64": {

 "ip": "2001:DB8:ACAD:56::101",

 "prefix_length": "64",

 "status": "valid"

 },

 "FE80::A00:27FF:FE73:D79F": {

 "ip": "FE80::A00:27FF:FE73:D79F",

 "origin": "link_layer",

 "status": "valid"

 },

 "enabled": true,

 "icmp": {

 "error_messages_limited": 100,

 "redirects": true,

 "unreachables": "sent"

 },

 "nd": {

 "dad_attempts": 1,

 "dad_enabled": true,

 "ns_retransmit_interval": 1000,

 "reachable_time": 30000,

 "suppress": false,

 "using_time": 30000

 }

 },

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 18 of 21 www.netacad.com

 "joined_group_addresses": [

 "FF02::1",

 "FF02::1:FF00:101",

 "FF02::1:FF73:D79F"

],

 "mtu": 1500,

 "oper_status": "up"

 },

 "_exclude": []

}

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 3: Modify the IPv6 Link-Local address.

On CSR1kv VM add the following IPv6 address:

CSR1kv> en

CSR1kv# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

CSR1kv(config)# interface gig 1

CSR1kv(config-if)# ipv6 address fe80::56:1 link-local

Step 4: Use Genie to verify configuration and parse output in JSON.

a. Parse unstructured output from the show ipv6 interface command into structured JSON. Use the --
output parameter to send the output to a different directory verify-ipv6-2. You can use the command
history to recall the previous command (up arrow). Just make sure you change the 1 to a 2 to create a
new verify-ipv6-2 directory.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie parse "show ipv6

interface gig 1" --testbed-file yaml/testbed.yml --devices CSR1kv --output

verify-ipv6-2

Enter enable password for device CSR1kv: <Enter>

2020-05-31T20:03:58: %UNICON-WARNING: Device 'CSR1kv' connection 'cli' does not have

IP and/or port specified, ignoring

Device 'CSR1kv' connection 'cli' does not have IP and/or port specified, ignoring

100%|███|

1/1 [00:00<00:00, 2.24it/s]

+==+

| Genie Parse Summary for CSR1kv |

+==+

| Connected to CSR1kv |

| - Log: verify-ipv6-2/connection_CSR1kv.txt |

|--|

| Parsed command 'show ipv6 interface gig 1' |

| - Parsed structure: verify-ipv6-2/CSR1kv_show-ipv6-interface- |

| gig-1_parsed.txt |

| - Device Console: verify-ipv6-2/CSR1kv_show-ipv6-interface- |

| gig-1_console.txt |

|--|

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 19 of 21 www.netacad.com

b. List the files created by Genie in the directory verify-ipv6-2. These are similar to the two files you created
before changing the IPv6 link-local address.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ ls -l verify-ipv6-2

total 16

-rw-rw-rw- 1 devasc devasc 4536 May 31 20:04 connection_CSR1kv.txt

-rw-rw-r-- 1 devasc devasc 728 May 31 20:04 CSR1kv_show-ipv6-interface-gig-

1_console.txt

-rw-rw-r-- 1 devasc devasc 846 May 31 20:04 CSR1kv_show-ipv6-interface-gig-

1_parsed.txt

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

c. Use the cat to examine the contents each file. The changes are highlighted in the output below.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat verify-ipv6-

2/CSR1kv_show-ipv6-interface-gig-1_console.txt

+++ CSR1kv: executing command 'show ipv6 interface gig 1' +++

show ipv6 interface gig 1

GigabitEthernet1 is up, line protocol is up

 IPv6 is enabled, link-local address is FE80::56:1

 No Virtual link-local address(es):

 Description: VBox

 Global unicast address(es):

 2001:DB8:ACAD:56::101, subnet is 2001:DB8:ACAD:56::/64

 Joined group address(es):

 FF02::1

 FF02::1:FF00:101

 FF02::1:FF56:1

 MTU is 1500 bytes

 ICMP error messages limited to one every 100 milliseconds

 ICMP redirects are enabled

 ICMP unreachables are sent

 ND DAD is enabled, number of DAD attempts: 1

 ND reachable time is 30000 milliseconds (using 30000)

 ND NS retransmit interval is 1000 milliseconds

CSR1kv#

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat verify-ipv6-

2/CSR1kv_show-ipv6-interface-gig-1_parsed.txt

{

 "GigabitEthernet1": {

 "enabled": true,

 "ipv6": {

 "2001:DB8:ACAD:56::101/64": {

 "ip": "2001:DB8:ACAD:56::101",

 "prefix_length": "64",

 "status": "valid"

 },

 "FE80::56:1": {

 "ip": "FE80::56:1",

 "origin": "link_layer",

 "status": "valid"

 },

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 20 of 21 www.netacad.com

 "enabled": true,

 "icmp": {

 "error_messages_limited": 100,

 "redirects": true,

 "unreachables": "sent"

 },

 "nd": {

 "dad_attempts": 1,

 "dad_enabled": true,

 "ns_retransmit_interval": 1000,

 "reachable_time": 30000,

 "suppress": false,

 "using_time": 30000

 }

 },

 "joined_group_addresses": [

 "FF02::1",

 "FF02::1:FF00:101",

 "FF02::1:FF56:1"

],

 "mtu": 1500,

 "oper_status": "up"

 },

 "_exclude": []

}

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 5: Use Genie to compare the difference between the configurations.

In the previous step, it is fairly easy to find the change to the IPv6 link-local address. But assume you were
looking for a problem in a complex configuration. Perhaps, you are trying to find a difference between an
OSPF configuration on a router that is receiving the proper routes and another router that is not, and you want
to see the differences in their OSPF configurations. Or perhaps, you are trying to spot the difference in a long
list of ACL statements between two routers that are supposed to have identical security policies. Genie can
do the comparison for you and make it easy to find the differences.

a. Use the following command to have Genie find the differences between the two parsed JSON files.
Notice that the output tells you where you can find Genie's comparisons. In this case, the first filename is
the previous configuration and the second filename is the current configuration.

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ genie diff verify-ipv6-

1 verify-ipv6-2

1it [00:00, 579.32it/s]

+==+

| Genie Diff Summary between directories verify-ipv6-1/ and verify-ipv6-2/ |

+==+

| File: CSR1kv_show-ipv6-interface-gig-1_parsed.txt |

| - Diff can be found at ./diff_CSR1kv_show-ipv6-interface-gig-1_parsed.txt |

|--|

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

b. Use cat to view the contents of the file with the differences. The plus "+" sign indicated additions and the
minus "-" sign indicates what was removed.

Lab - Automated Testing Using pyATS and Genie

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 21 of 21 www.netacad.com

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ cat ./diff_CSR1kv_show-

ipv6-interface-gig-1_parsed.txt

--- verify-ipv6-1/CSR1kv_show-ipv6-interface-gig-1_parsed.txt

+++ verify-ipv6-2/CSR1kv_show-ipv6-interface-gig-1_parsed.txt

 GigabitEthernet1:

 ipv6:

+ FE80::56:1:

+ ip: FE80::56:1

+ origin: link_layer

+ status: valid

- FE80::A00:27FF:FE73:D79F:

- ip: FE80::A00:27FF:FE73:D79F

- origin: link_layer

- status: valid

 joined_group_addresses:

- index[2]: FF02::1:FF73:D79F

+ index[2]: FF02::1:FF56:1

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Part 6: Lab Cleanup and Further Investigation

In this Part, you will deactivate your Python venv and investigate other Genie use cases.

Step 1: Deactivate your Python virtual environment.

When you have completed this lab, you can deactivate your Python virtual environment using the deactivate
command. Notice that your prompt is no longer preceded by "(csr1kv)".

(csr1kv) devasc@labvm:~/labs/devnet-src/pyats/csr1kv$ deactivate

devasc@labvm:~/labs/devnet-src/pyats/csr1kv$

Step 2: Explore more pyATS and Genie use cases.

Previously in this lab, you cloned the examples folder from the Cisco Test Automation with pyATS and
Genie repository on GitHub.

There are many other use-cases and in this GitHub repository. You may wish to explore other folders and
the various other use-cases. See the following web sites for more information:

 Search for: " NetDevOps validation using Cisco pyATS | Genie for network engineers: no coding
necessary"

 Cisco GitHub: https://github.com/CiscoTestAutomation
End of Document

https://github.com/CiscoTestAutomation

